主页 锂电池知识

电动汽车多功能充电系统技术原理及应用

认证证书
280AH-CB
GBS-CE
CATL-UL
客户评论

朗凯威锂这个12V锂电池,发货快,商家充电器也好。插在户外广场 舞音响上,即又可以跳广场舞或交谊舞了,使用真方便,锂电池组强劲有力,充足后比原有音响自带的电池组,时间上 用得,更长更久,价廉物美,是正品锂电组,我喜欢,主要 是为了防止音响原带干电池组,突然电用完,让朋友们扫兴,故而备之。

—— 来自广西地区的李阿姨

在网站找到朗凯威三元锂3.7V电池,购买之前也是充满者不确定,担心小公司锂电池的质量和售后问题。但是怀着忐忑的心里还是决定打电话询问下锂电池价格,不买也没事,没想要客服很专业,销售给出的价格也很低,收到公司产品之后很耐心的讲解怎么使用,电池质量也没有问题,很愉快的网上购物~~~

—— 来自江苏地区的王经理

之前都是采购国内大厂设备偶尔在国外市场看看,通过网上发现咱们国内还有一家朗凯威锂电池生产厂家让我眼前一亮,购买前很担心锂电池的续航能力担心质量问题,到货之后发现它的安全性让你特别放心,合作很愉快期待下次!

—— 来自云南地区的杨先生

朗凯威是我多年来一直回复的合作伙伴之一。其他一些供应商经常更换销售人员,但朗凯威没有这样做

—— 来自美国的Adam

我对我们在深圳与LFP电池公司的Elsa的会面有着美好的回忆,并对你们公司日益壮大的规模留下了美好的印象。我们都是直率且诚实的人,这是最重要的价值观,所以我相信我们能够在未来有很好的合作或交流。

—— 来自意大利的Palombo

锂电池知识

电动汽车多功能充电系统技术原理及应用

1硬件电路设计


本系统采用移相全桥软开关电路,即将Boost电路与全桥变换器合成一起组成单级pFC电路,该电路结构简单、效率高,可以实现对输入电流的整定,又可以工作在较大功率场合,发挥了全桥电路的优势。


系统重要由充电主电路和充电控制回路组成,图1为多功能充电系统硬件原理图。


1.1系统工作原理


本设计采用了开关电源技术,最大功率为3500W,先将220V单相工频交流电,经4个二极管组成全桥电路进行整流,再经过大电容滤波得到300V左右的直流电,此时直流电中纹波较大。直流电通过由4个绝缘栅双极晶体管(IGBT)组成的全桥逆变器,得到电压可调的高频交流电,经高频变压器耦合到副边,再经全桥整流,最后经电感电容滤波得到纹波很小的直流电为蓄电池充电。多功能充电系统能为不同类型的蓄电池及容量不同的蓄电池充电,其充电过程中的充电电压、电流通过单片机实时控制,整个充电系统为反馈控制系统,单片机通过实时检测充电过程中的电流、电压及温度监测整个充电过程,有效地防止了充电过程中过流、过压及过热现象,使充电过程安全稳定地进行。


逆变桥前的空气开关是为了防止电路中出现短路或大电流损坏蓄电池或电子器件。单片机通过检测充电电流、电压及温度与充电前的设定值进行比较,控制输出4路pWM波到4个IGBT的栅极,从而控制其集电极到发射极电流通断时间,达到控制输出电压的目的。


由于IGBT需隔离驱动,本设计选用了三菱公司IBGT专用驱动芯片M57962L,图2是其应用电路。


由于选用了4只IGBT组成全桥逆变器,每个IGBT要一个M57962L芯片驱动,而每个M57662L芯片要3个电压等级即15V、l0V、5v为其供电,其中5v电压同时为MC9S12XS128单片机供电,本文设计了一款功率为50W的变压器,为单片机及4个M57962L芯片供电,其次级绕组输出3组电压,经整流滤波稳压后,得到上述所需的3个电压。


1.2充电控制回路


选用飞思卡尔MC9S12XS128单片机作为控制核心进行数据采集和控制,其内部数据存储器8KB、程序存储器128KB,2个SCI、1个SpI、1个IIC、1个CAN、16路A/D、8路pWM、8路ECT模块,其工作频率为80MHz,运算速度快,处理能力大大提高。该芯片集成了l6路l2位高精度的A/D转换器,能直接对蓄电池的充电电压、电流及温度进行检测,8路pWM可直接输出到M57962L芯片控制IGBT的通断,简化了单片机外围电路的设计。[page]


1.2.1电压检测


本系统选用电阻分压式结构,并联在充电电路中监测电压信号,电压信号从pAD0口经单片机自带A/D转换器传至单片机进行处理,这种结构能根据外面的实际电压自动选用相应的量程检测电压,使电压越小时,检测到的电压精度越高,有助于更精确地控制充电过程中的充电电压的变化。


1.2.2电流检测


本系统选用霍尔式电流传感器检测充电电流信号,并将检测到的电流信号经过一定的换算处理从pAD1口经单片机自带的A/D转换器传至单片机进行处理,该传感器精度高,能精确的检测到充电电流0.1A的变化。


1.2.3温度检测


本系统选用热敏电阻检测充电过程中电池温度信号,实际应用时将热敏电阻贴在电池上检测电池温度,该热敏电阻能准确检测到充电过程中电池温度的变化量,温度信号经pAD2口传至单片机进行处理,防止充电过程中电池过热,使充电过程能平稳、安全的进行。


1.2.4液晶显示模块


本系统选用带中文字库的12864液晶屏,液晶屏模块与单片机的pA、pB口相连。


能实时显示充电过程中的充电电压、充电电流以及电池的端电压和温度,并在空闲时能显示日历、4路pWM波的占空比等。


1.2.5按键输入


选用4x4矩阵键盘。通过按键可切换到蓄电池充电方法选择、充电参数设定、日历调整、4路pWM波的占空比显示及充电电压、充电电流、电池的端电压和温度显示等界面。


1.2.6pWM输出


pWM的输出频率由一个按时器/计数器设定的高频交流电交变周期决定,本系统pWM波形选用左对齐的方式,每路pWM的占空比:[(pWMpERx—pWMDTYx)/pWMpERx]×100%,其中pWMpERx表示pWM通道寄存器,pWMDTYx表示pWM通道占空比寄存器。


2软件设计


多功能充电系统的系统软件用C语言编写,经过汇编、仿真调试写入单片机的内部程序存储器中,实现系统软件的结构层次化、功能模块化,软件的可读性、可维护性和可扩展性强。


多功能充电系统针对不同类型的蓄电池,设计了相应的充电方法,软件重要由初始化、充电前电池好坏检测、充电阶段和充电保护等部分组成。


本系统重要应用磷酸铁锂进行试验,其充电阶段由小电流充电阶段、恒流充电阶段、恒压充电阶段3部分组成,其程序流程图如图3所示。


充电阶段:电池检测程序完成后,开始对电池进行小电流充电,充电速率约为1/5C左右;当小电流充电至电池电压达到参考值时,系统进入恒流充电阶段,此阶段为蓄电池的快速充电阶段,充电速率为1-2C;当充电电压达到设定的电池的最大充电电压时,系统进入恒压充电阶段,随着电池电压逐渐上升,充电电流逐渐减小;当充电电流减d,N设定参考值时,系统判断蓄电池充足停止充电。[page]


充电保护部分:充电过程中不断监测电池电压是否超过安全值、温度或温度变化率是否达到限定值,如有上述情况立即终止充电。检测电池电压是为了防止锂离子电池和蓄电池过充,检测温度和温度变化率是否达到限定值,是为了防止镍氢和镍镉电池过充。


上述充电阶段是针对锂离子电池设计的,实际中重要用磷酸铁锂离子电池组进行实验,关于其它类型蓄电池,在软件上设定了相应的充电方法:蓄电池充电阶段同锂离子电池,即先小电流预充,再恒流充电、最后恒压充电,当恒压充电电流小到一定程度时,系统判断电池充足并停止充电;镍镉电池,先小电流预充,再快速恒流充电,当检测到电池电压第一次下降时,系统判断电池充足并停止充电;镍氢电池,先小电流预充,再快速恒流充电,当电池电压出现零上升时,判断电池充足并停止充电。


蓄电池和锂离子电池自放电率低,电池充满后可直接停止充电,镍氢和镍镉电自放电率高,如夜间无人看守充电时,可在电池充足后采用涓流充电方式给电池补充电荷,使蓄电池保持充足电状态。


3结语


实验结果表明,所设计的多功能充电系统能正常工作,输出的直流电压平稳、纹波小,充电过程控制精度高,能快速稳定地为各类蓄电池充电,并在蓄电池充满电后及时停止充电,有实际应用推广价值。


发布时间: 2022-01-08 11:33:01 >>资讯列表

本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除

 
 
Baidu
map